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Abstract  — Security of sensitive data in the network is a key 

issue in a world where such sensitive data can easily be 

transferred between different servers and locations (e.g., in 

networked clouds). In this context, there is a particular need to 

control the path followed by the data when they move across the 

cloud (e.g., to avoid crossing -even encrypted- un-trusted nodes 

or areas). In this paper we proposed therefore a new approach 

which aims to leverage the programmability offered by the SDN 

technology in order to enforce a trusted path for the transfer of 

sensitive data in the network. Given a policy related to the 

sensitive data (e.g., the data should not cross a given area), our 

approach allows sending this policy to an extended SDN 

controller (called Trusted Path Controller) which automatically 

enforces this policy in the SDN network. Two architectures have 

been investigated: the Out-of-Band architecture (the policy being 

sent to the Trusted Path Controller via a Web Service interface) 

and the In-Band architecture (the policy being sent to the 

Trusted Path Controller via a dedicated “signaling packet”). 

These two architectures have been implemented in a SDN 

controller. Experimentations and evaluations have also been 

performed on a test-bed of SDN switches which allow showing 

the feasibility of this approach as well as its performances. 
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I.  INTRODUCTION 

Security of sensitive data in the network is a key issue in a 

world where such sensitive data can easily be transferred 

between different servers and locations. This is notably the 

case for the Cloud environment which offers the ability to 

provide IT and networking resources on demand; while 

requiring low effort for the customers to manage these 

resources. Nevertheless, the enterprises are still hesitant to put 

their sensitive data in such cloud infrastructures, even for a 

time-bound project, as they have fears about their security [1]. 

Moreover, sensitive data as Personally Identifiable Information 

(PII) are also subject to strong country-based regulatory 

constraints [2], notably dealing with their locations, and that 

may be an actual hurdle for companies or administrations to 

transfer and store these sensitive data in a cloud environment.  

The problem of data storage location is then one of the 

major cloud security issues which is notably debated in the 

technical community as well as in the public sphere. Some 

technical solutions, even if not yet fully satisfactory, are 

however being proposed to control data storage location in 

order to be compliant to the related policies [3]. But, beyond 

the only storage location, there is also a need to control the path 

followed by the data when transferred in the cloud (i.e., either 

when firstly uploaded in the cloud or when transferred within 

the cloud between different storage entities). Indeed, solutions 

as communication protection (e.g., TLS/SSL, VPN) may not be 

considered as sufficient as they do not prevent an eyedropper to 

infer some information from the traffic done between the two 

extremities (e.g., two Virtual Machines). For instance, the 

monitoring of the level of traffic (even encrypted) between two 

cloud entities, for instance belonging to two different 

companies, can be used in order to infer the level of exchanges 

between these companies. Moreover, some Denial of Service 

(DoS) attacks can be performed on un-trusted or insufficiently 

secure nodes located on the path of the sensitive traffic (and 

then disturbing or blocking this sensitive traffic). We can also 

note that some regulations may impose direct constraints on the 

data transport (e.g., new European initiative on the “Schengen 

of data”). 

It may then be requested that the flow of sensitive data 
must cross the network infrastructure only in accordance to 
specific security or regulatory policies. For instance, a policy 
should state that the path followed by a sensitive data should 
not cross a given area or country. Also, other policies should 
state that the path should not cross an un-trusted node, network, 
cloud provider, telco, etc.  

In order to tackle this problem of trusted path for sensitive 
data transfer, the emerging technology of Software Defined 
Networking (SDN) is of particular interest as it allows making 
the networks more programmable. Indeed, the principle of 
SDN is to remove the control plane from the network 
equipment and have it available as a software module called 
SDN controller. This SDN controller is a programmable entity 
which allows developing upon it various applications of 
network flow processing such as Firewall, Network Address 
Translation (NAT), Deep Packet Inspection (DPI), etc. This 
programmability offered by SDN (through the SDN controller) 
can then be exploited in order to dynamically configure a 
network path that satisfies the security policies related to the 
sensitive data to convey [4]. The objective of the work 
presented in this paper is then to propose a new network 
application (running upon a SDN controller) allowing us to 
automatically compute and establish such a trusted path 
compliant with the security policies of the data to transfer. 

The paper is structured as follows. In Section 2, we analyze 
the related work and position our approach. Then section 3 
introduces the general architecture and the proposed interfaces. 
Section 4 details our implementation, the SDN test-bed used 
for experimentations, and the obtained results as well as some 
recommendations. Finally, the conclusion summarizes the 
contributions and presents some perspectives. 



II. RELATED WORK 

Different works have already been performed on how to 
secure the SDN technology for instance by preventing DoS 
attacks through overloading SDN switches or attacks on SDN 
applications, or man in the middle attacks between the SDN 
controller and the switch [5][6]. However, the problem we 
address in this paper falls within the dual topic on how to use 
SDN in order to improve network security, and this problem 
has been less addressed at this stage. Related to this last topic, 
we can nevertheless mention research works exploiting SDN to 
better monitor and inspect the traffic for the detection of 
potential network attacks or malicious softwares [7], and then 
to reroute this hazardous traffic in a quarantine zone. Other 
approaches [8] use SDN in order to “slice” the network traffic 
which improves the user data security (each SDN controller 
being for instance only able to access to one slice but not to the 
others); but these approaches do not deal with the computation 
of a trusted path able to transport a sensitive traffic in the 
network. The use of SDN technologies for trusted path has in 
fact already been mentioned [4], but to our best knowledge, it 
has not really been proposed and carried out a solution to 
enforce a trusted path satisfying the security constraints of a 
particular sensitive data to transport in the network. 

However, various works are tackling the use of SDN in 
order to establish a network path that satisfies some constraints 
of QoS (e.g., bandwidth, latency, jitter) or reliability (e.g., 
using disjoint multipath). These works cover the intra or inter 
domains [9][10] and can leverage classical path computation 
approaches such as RSVP, MPLS Traffic Engineering (MPLS-
TE), or IETF Path Computation Element (IETF-PCE). 
Nevertheless, these approaches are not targeting the 
establishment of a trusted path satisfying some specific security 
constraints; even if some approaches mention this as a future 
direction. For instance, in the scope of the IETF-PCE working 
group, it is proposed an extension of the Path Computation 
Element Communication Protocol (PCEP) with the notion of 
“Explicit Route Exclusions” [11]. Therefore, the approach 
proposed in this paper consists in leveraging this type of work 
by using the SDN technology in order to support various 
security constraints as well as to enable a dynamic path 
configuration. This will indeed allow protecting the different 
types of sensitive data transported in the cloud infrastructure as 
well as supporting the dynamicity and elasticity of such cloud 
environments (e.g., ensuring the dynamic and per-flow path 
configuration for VMs migrating to different locations). 

III. GENERAL ARCHITECTURE 

In this section, we present the general architecture as well 
as the proposed messages to request the setting and unsetting of 
a trusted path satisfying some given security constraints.  

A. Architecture principles 

Fig.1 depicts the principle of our proposed architecture 
allowing to request and configure a Trusted Path (TP) in a 
SDN network. The core of this architecture is the proposed 
Trusted Path Controller (TPC) which is running on top of a 
SDN controller. Let then consider the transport of a sensitive 
data through the SDN network and between two applications 
running in two different servers/VMs (called Source and 
Destination server/VM in Fig.1). The transport of this 

particular sensitive data flow should comply with a given 
security policy (e.g., avoid un-trusted switches, areas, 
providers). Note that the application can be a business 
application of the cloud user or even a FTP server/client for 
instance to backup a sensitive file. Indeed, for a backup, it may 
be requested that a sensitive file (or set of sensitive files) must 
be transferred by FTP (or SFTP) through a path satisfying a 
given security constraint; while the other traffic (e.g., Web or 
HTTP) can use the default path which is then not necessarily 
satisfying this constraint.  

A Trusted Path Agent (TPA) is then running in the Source 
server/VM in order to request the establishment of the TP for 
the transfer of the sensitive data flow. As shown Fig.1, the TPA 
can get the security policy when the application requests the 
transfer. For this purpose, different mechanisms can be used 
such as the one proposed in our previous work where data and 
policy are bundled in a structure called Privacy Data Envelope 
(PDE). In this case, if the application is executed in a Web 
browser (connected to a remote Web Server), the TPA can be a 
browser plug-in intercepting the HTTP messages transporting 
the PDE (policy being extracted from this PDE) [12]; if the 
application is a mailer, the TPA can be a mailer plug-in (policy 
being extracted from the mail containing the PDE) [12]; or if 
the application is a FTP server, the TPA can be a module using 
Linux FUSE and intercepting  -within the OS- the FTP request 
made on the PDE file (policy being also extracted from it) [13]. 
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Fig.1.  Overall architecture of the SDN-based trusted path control.  

The TPA is then in charge to send the policy to the TPC 
(see Fig.2) which  (i) computes a path satisfying the policy (see 
Policy-aware Path Computing module in Fig.2) and (ii) 
configures this path within the SDN network by using a SDN 
protocol as OpenFlow (see Policy-aware Path Configuration 
module in Fig.2). An acknowledgment is then sent back to the 
TPA to inform it that the request has been received and that the 
path is well configured or not (if not, some information is 
provided within this acknowledgment about the reason of the 
failure). Note this mechanism allows changing the policy for 
each file transfer if needed. 

There are two possible architectures for the TPA to send the 
policy to the TPC (see Fig.1): 

• Out-of-Band architecture: the TPA sends the policy on a 
Web Service interface (e.g., REST) exposed by the TPC. 
This Web Service interface is then in charge to trigger the 
Policy-aware Path Computing module (see Fig.2). 



• In-Band architecture: the TPA forges and sends to the SDN 
network a dedicated IP packet (“signaling packet”) 
containing the policy in its payload. When this packet 
crosses the first SDN switch of the network, it is 
forwarded to the SDN controller (whether because it does 
not correspond to any rule in the switch forwarding table, 
or because it corresponds to a dedicated rule identifying it 
as a request coming from a TPA). The SDN controller 
then extracts the policy from the signaling packet with the 
Policy Extractor module and triggers the Policy-aware 
Path Computing module (see Fig.2). 

In the section IV, we will provide more details on these two 
architectures with their respective advantages and drawbacks.  
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Fig.2.  Trusted Path Controller. Arrow “Policy” (resp. “Ack”) corresponds 

to the message set-trusted-path (resp. ack-set-trusted-path). 

B. Communication to the Trusted Path Controller 

The application (or an administrator) communicates, 
through the TPA, to the TPC thanks to different messages. 
They allow setting (and unsetting) a TP and getting the 
response back. These messages, both applicable for the Out-of-
Band and In-Band architectures, are the following: 

• set_trusted_path: request to configure a TP satisfying a 

given policy. 

• ack_set_trusted_path: response to the set_trusted_path 

request. In this response, it is specified if the TP has been 

set or not (and the reason). 

• unset_trusted_path: request to release a TP. 

• ack_unset_trusted_path: response to the 

unset_trusted_path request. In this response, it is 

specified if the TP has been unset or not (and the reason). 

 
Moreover, the previous message set_trusted_path (to 

request a TP) has the following parameters: 

• request_id: identifier of the request. It is incremented 

each time a set_trusted_path the TPC receives a request. 

• destination_IP: IP address of the destination of the TP. 

• port_number: port number of the destination of the TP 

(for a TCP/UDP traffic). 

• excluded_switches: list of excluded switches given by 

their characteristics as follows: 

- switch_id:  identifier of the switch given by the 

controller. 

- manufacturer: company name of the switch 

manufacturer. All the switches for which the MAC 

address is within the Organizationally Unique Identifier 

(OUI) of this manufacturer will be excluded. 

- type: Type of the switch (e.g., PHYSICAL_SWITCH,  

VIRTUAL_SWITCH). 

- OS_version: OS version of the switch. 

• excluded_links: list of excluded links given by their 

characteristics as follows: 

- link_id: link defined with the switch_id of the two 

switchs at the extremity of the link. 

• telcos_id: identifier of the telco. 

• location: location of the switch that can be a country (e.g., 

FRANCE, USA) or any other geographical entity.  

IV. PROTOTYPE AND EVALUATIONS 

This section presents the prototype implementing our 
approach, its experimentations performed on a test-bed of 
SDN/OpenFlow switches, and the obtained evaluation results 
(notably regarding the Out-of-Band and In-Band architectures).  

A. Prototype and SDN test-bed description 

The prototype is performed on the Floodlight SDN 
controller (version 0.90) which has been extended with our 
proposed TPC module. This module, developed in java, takes 
as inputs (i) the policy defined in the previous section III.B and 
(ii) the Network Topology available in the SDN controller (see 
Fig.2). It computes then a TP compatible with this policy by 
using a shortest path algorithm performed over the network 
topology which has been filtered according to the requested 
policy (e.g., avoid given un-trusted nodes or links). The TP is 
then sent to the Policy-aware Path Configuration module which 
is in charge to establish the different SDN rules that need to be 
enforced in each switch along this path and to send these rules 
to the SDN controller for the actual OpenFlow-based 
configuration of the switches.   

Regarding the TPA, it has simply been implemented as a 
Web Service client (using the curl command) for the Out-of-
Band case; and as an IP packet forged by the Scapy tool (but 
any other similar tool can be used) for the In-Band case. 

The SDN test-bed is composed of five OpenFlow-enabled 
switches (see Fig.3), all of type Alcatel-Lucent OmniSwitch 
6900-T20. The Floodlight controller (extended with our 
proposed TPC module) is running in a machine M1 (HP620, 
Ubuntu). It communicates to each SDN switch via the 
OpenFlow protocol (see dashed lines in Fig.3). The switches 
(named SW1 to SW5) are connected together through Ethernet 
10 Gb links and the overall connectivity topology is shown 
Fig.3 (see solid lines). The switch ports are noted Pij where i 
denotes the identifier of the switch and j the identifier of the 
port of this switch. Finally, a Client machine M2 (ASUS 
G75VW, Windows 8) is connected to the switch SW2; while a 
Web Server machine M3 (HP DC7700, Windows 7) and a FTP 
Server machine M4 (HP DC7700, Windows 8) are connected 
to the switch SW5. M2, M3 and M4 are connected to these 
switches with Ethernet 10 Gb links. 

This test-bed aims to illustrate the case of a company 

having applications deployed over different servers/VMs and 

that need to exchange different types of sensitive data between 

them over a SDN network. This is of course a simplified 



layout regarding a full data center environment but it is 

however focused on the core part of the mechanism we want 

to evaluate (i.e., using our proposed extended SDN controller 

to enforce a trusted path over a network of SDN switches).  
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Fig.3.  Test-bed of SDN/OpenFlow switches (OmniSwitch 6900-T20) 

B. Experimentations and results 

For the experimentation, we have considered the following 

data exchanges: 

• An HTTP request from the Client M2 to the Web Server 

M3. No policy is requested for this HTTP request. 

• An FTP file transfer of a sensitive data from the Client 

M2 to the FTP Server M4. To perform the FTP transfer of 

this sensitive file, a policy is requested and consists in 

avoiding the switch SW1 considered as un-trusted (e.g., 

as it may belong to an un-trusted network area).  

 

The experimentation is composed of the following steps: 

1. From the Client M2, send the policy (i.e., avoid switch 

SW1) to the TPC for the FTP transfer of a sensitive data 

to be done from M2 to M4. The two Out-of-Band and In-

Band solutions have been respectively tested. 

2. From the Client M2, perform the HTTP request to the 

Web Server M3. 

3. From the Client M2, perform the FTP transfer of the 

sensitive data from M2 to the FTP Server M4. 

 

In order to observe the path followed by the data, it is 

observed the packets on the following switch ports: P11, P31, 

P41, P51 (see Fig.3). For this purpose, a port mirroring has been 

configured on each of these switch ports so that the traffic can 

be captured by the WireShark tool. Fig.4 depicts obtained 

results in WireShark once the HTTP request and the FTP 

transfer of the sensitive file have then been performed (in the 

Out-of-Band case but a similar result is obtained with the In-

Band case). We can see that the policy has been well enforced 

as, while the HTTP request is crossing the switches SW2-

SW1-SW5 (shortest path); the sensitive data has been 

transferred by crossing the switches SW2-SW3-SW4-SW5. 

The transfer of the sensitive data follows therefore a trusted 

(but longer) path as the switch SW1 is not authorized (i.e., un-

trusted) by the policy applicable for this data. 
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(observed traffic: HTTP request)
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(observed traffic: FTP file transfer)
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Fig.4.  Wireshark traffic captures. The non sensitive HTTP request crosses 

SW2-SW1-SW5 (SW1 being untrusted); while the FTP transfer of the 

sensitive data crosses SW2-SW3-SW4-SW5 (trusted path) 

In addition, the following performance times have been 

measured during the experimentation: 

• PolicySendingAndAck: time to send the policy to the TPC 

module and get back the ack.  

• OpenFlowRulesConfiguration: time to configure the 

OpenFlow rules in each switch. 

 

Note that due to constraints in the Floodlight 

implementation, the SDN switches are actually configured 

(according to the computed trusted path) when the first packet 

of the sensitive flow is crossing the switches. Therefore, the 

total time to configure all the SDN switches is the time 

OpenFlowRulesConfiguration multiplied by the number of 

switches to configure. 
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Fig.5.  Policy sending time and OpenFlow rule configuration time 

The performance times have been evaluated after having 

performed the previous experimentation 10 times. The 

PolicySendingAndAck time (to send the policy and get the 

ack) is of an average of 61 ms in the Out-of-Band case, and of 

an average of 3 ms in the In-band case. 

The OpenFlowRulesConfiguration time per switch is of an 

average of 8,6 ms (and of course does not depend on the Out-

of-Band or In-band architecture). Moreover, this 

OpenFlowRulesConfiguration time is split between (i) 7,5 ms  



(i.e., 87% of the time) spent in the SDN controller and (ii) 1,1 

ms (i.e., 13% of the time) spent in the switch configuration 

(including the communication with the SDN controller). Fig.5 

depicts these different values for the In-Band case. 

V. DISCUSSIONS 

Let analyze the In-Band and Out-of-Band architectures 

according to different criteria. 

First, the policy sending performance (i.e., 

PolicySendingAndAck time) is then better for In-Band than 

for Out-of-Band. 

Also, in the In-Band case, the TPA has not to be 

configured with the address of the TPC (as the set-trusted-path 

packet will be automatically forwarded to it when crossing the 

first SDN switch) and this improves the system 

configurability. Indeed, for the Out-of-Band, all TPAs must 

then be configured with the address of the TPC. 

Regarding security, we can note that with the Out-of-Band 

architecture and its exposed Web Services, the TPC could be 

more easily attacked by a hacker to take control of the 

network. In-Band attacks are also possible but they could be 

more easily filtered by the SDN controller. 

Finally, regarding portability, the In-Band architecture 

requires the set-trusted-path signaling packet (which embeds 

the policy in its payload) to be entirely forwarded to the SDN 

controller (i.e., with the payload) through the OpenFlow 

Packet-In. This aspect is mentioned in the OpenFlow 

specification from the release 1.2 by setting the field max_len 

of the OpenFlow Packet-In with the value 

OFPCML_NO_BUFFER (meaning that the packet is not 

buffered in the switch). However, it requires the switch to be 

configured accordingly. The Out-of-Band architecture has of 

course not this constraint as the set-trusted-path request is not 

transmitted through OpenFlow. 

Fig.6 summarizes this comparison. Despite the last point 

on portability, we could then conclude that the balance falls 

more in favor of the In-Band architecture. 
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Fig.6.  Comparison of Out-of-Band and In-Band architectures 

VI. CONCLUSION 

In this paper we have proposed a new approach which 
leverages the programmability offered by the SDN technology 
in order to enforce a trusted path to transfer sensitive data in 
the network. Indeed, given a policy related to a sensitive data 
(e.g., data should not cross nodes of a given area), our approach 
allows sending this policy to a Trusted Path Controller which 
automatically enforces it in the network. The two In-Band and 
Out-of-Band architectures have been investigated and 
implemented. Finally different experimentations and 
evaluations have been performed on a test-bed of SDN 

switches (OmniSwitch 69000-T20) which has allowed us to 
show the feasibility of this approach as well as some of its 
performances.  

Different perspectives can be mentioned notably by making 
further analysis on the scalability of the two architectures 
(knowing however that the additional traffic is related to 
signaling and also only to the transfer of the sensitive data) or 
on their security (e.g., by signing the IP signaling packet or by 
certifying the trusted path configuration). In addition, the 
approach will be carried out in a full data center environment 
(e.g., integration of the Trusted Path Controller within a cloud 
management platform such as OpenStack and its Neutron 
network component). For this purpose, it will be considered the 
inter and intra data center parts of the trusted path as well as the 
use of distributed SDN controllers in order to provide the end-
to-end trusted path in such environments. 

 ACKNOWLEDGMENT 

The authors would like to greatly thank Alcatel-Lucent 
Enterprise, and especially Madani Dahili, for offering an access 
to their equipment and lab as well as for their very helpful 
support. They also thank Laurent Bernard (Télécom SudParis), 
Monsef Tazi (Télécom SudParis), and Dominique Verchère 
(Alcatel-Lucent Bell Labs) for all their help and advices.  

REFERENCES 

[1] Cloud Security Alliance (CSA), “The notorious nine cloud computing 
top threats in 2013”, February 2013. 

[2]  Article 29 Data Protection Working Party, “Opinion 05/2012 on cloud 
computing”, WP 196, Brussels, July 2012. 

[3] S. Pearson and G. Yee (Eds.), “Privacy and security for cloud 
computing”, Springer, 2013. 

[4] D. Pitt, “Trust in the cloud: the role of SDN”, Network Security, 
Elsevier, vol. 2013, no 3. 

[5] S. Scott-Hayward, G. O'Callaghan,  S.Sezer, S. "SDN security: A 
survey". In IEEE conference on SDN for Future Networks and Services, 
SDN4FNS, Trento, Italy, 2013. 

[6] R. Kloti, V. Kotronis, P. Smith, "OpenFlow: A security analysis," IEEE 
International Conference on Network Protocols, ICNP, Göttingen, 
Germany, 2013. 

[7] S. Shin, G. Gu, "CloudWatcher: Network security monitoring using 
OpenFlow in dynamic cloud networks", IEEE International Conference 
on Network Protocols, ICNP, Austin, USA, 2012. 

[8] V. Kotronis, D. Schatzmann, B. Ager, “On bringing private traffic into 
public SDN testbeds”, ACM SIGCOMM workshop on Hot topics in 
software defined networking, Hong Kong, 2013. 

[9] F. Derakhshan, H. Grob-Lipski, H. Roessler, P. Schefczik, M. Soellner, 
“Enabling Cloud Connectivity Using SDN and NFV Technologies”, 
Mobile Networks and Management, Lecture Notes of the Institute for 
Computer Sciences, Vol. 125, Springer, 2013. 

[10] F. Salvestrini, G. Carrozzo, N. Ciulli, "Towards a Distributed SDN 
Control: Inter-Platform Signaling among Flow Processing Platforms", 
IEEE SDN Conference on  Future Networks and Services, SDN4FNS, 
Trento, Italy, 2013. 

[11] E. Oki, T. Takeda, A. Farrel, “Extensions to the Path Computation 
Element Communication Protocol (PCEP) for Route Exclusions”, IETF 
RFC 5521, April 2009. 

[12] M. Ghorbel, A. Aghasaryan, S. Betgé-Brezetz, M.P. Dupont, G.B. 
Kamga, S. Piekarec, “Privacy data envelope: concept and 
implementation”, Ninth Annual International Conference on Privacy, 
Security and Trust, PST, Montréal, Canada, 2011. 

[13] S. Betgé-Brezetz, G.B. Kamga, M.P. Dupont, A. Guesmi, “End-to-End 
Privacy Policy Enforcement in Cloud Infrastructure”, IEEE Conference 
on Cloud Networking, CloudNet, San Francisco, USA, 2013. 


