
SDN-based Trusted Path Control

Stéphane Betgé-Brezetz, Guy-Bertrand Kamga

Alcatel-Lucent Bell Labs

Nozay, France

Email: firstname.lastname@alcatel-lucent.com

Ali El Amrani Joutei, Oussama Maalmi

Telecom SudParis

Evry, France

Email: firstname.lastname@telecom-sudparis.eu

Abstract — Security of sensitive data in the network is a key

issue in a world where such sensitive data can easily be

transferred between different servers and locations (e.g., in

networked clouds). In this context, there is a particular need to

control the path followed by the data when they move across the

cloud (e.g., to avoid crossing -even encrypted- un-trusted nodes

or areas). In this paper we proposed therefore a new approach

which aims to leverage the programmability offered by the SDN

technology in order to enforce a trusted path for the transfer of

sensitive data in the network. Given a policy related to the

sensitive data (e.g., the data should not cross a given area), our

approach allows sending this policy to an extended SDN

controller (called Trusted Path Controller) which automatically

enforces this policy in the SDN network. Two architectures have

been investigated: the Out-of-Band architecture (the policy being

sent to the Trusted Path Controller via a Web Service interface)

and the In-Band architecture (the policy being sent to the

Trusted Path Controller via a dedicated “signaling packet”).

These two architectures have been implemented in a SDN

controller. Experimentations and evaluations have also been

performed on a test-bed of SDN switches which allow showing

the feasibility of this approach as well as its performances.

Keywords — SDN network; trust; policy; path control

I. INTRODUCTION

Security of sensitive data in the network is a key issue in a

world where such sensitive data can easily be transferred

between different servers and locations. This is notably the

case for the Cloud environment which offers the ability to

provide IT and networking resources on demand; while

requiring low effort for the customers to manage these

resources. Nevertheless, the enterprises are still hesitant to put

their sensitive data in such cloud infrastructures, even for a

time-bound project, as they have fears about their security [1].

Moreover, sensitive data as Personally Identifiable Information

(PII) are also subject to strong country-based regulatory

constraints [2], notably dealing with their locations, and that

may be an actual hurdle for companies or administrations to

transfer and store these sensitive data in a cloud environment.

The problem of data storage location is then one of the

major cloud security issues which is notably debated in the

technical community as well as in the public sphere. Some

technical solutions, even if not yet fully satisfactory, are

however being proposed to control data storage location in

order to be compliant to the related policies [3]. But, beyond

the only storage location, there is also a need to control the path

followed by the data when transferred in the cloud (i.e., either

when firstly uploaded in the cloud or when transferred within

the cloud between different storage entities). Indeed, solutions

as communication protection (e.g., TLS/SSL, VPN) may not be

considered as sufficient as they do not prevent an eyedropper to

infer some information from the traffic done between the two

extremities (e.g., two Virtual Machines). For instance, the

monitoring of the level of traffic (even encrypted) between two

cloud entities, for instance belonging to two different

companies, can be used in order to infer the level of exchanges

between these companies. Moreover, some Denial of Service

(DoS) attacks can be performed on un-trusted or insufficiently

secure nodes located on the path of the sensitive traffic (and

then disturbing or blocking this sensitive traffic). We can also

note that some regulations may impose direct constraints on the

data transport (e.g., new European initiative on the “Schengen

of data”).

It may then be requested that the flow of sensitive data
must cross the network infrastructure only in accordance to
specific security or regulatory policies. For instance, a policy
should state that the path followed by a sensitive data should
not cross a given area or country. Also, other policies should
state that the path should not cross an un-trusted node, network,
cloud provider, telco, etc.

In order to tackle this problem of trusted path for sensitive
data transfer, the emerging technology of Software Defined
Networking (SDN) is of particular interest as it allows making
the networks more programmable. Indeed, the principle of
SDN is to remove the control plane from the network
equipment and have it available as a software module called
SDN controller. This SDN controller is a programmable entity
which allows developing upon it various applications of
network flow processing such as Firewall, Network Address
Translation (NAT), Deep Packet Inspection (DPI), etc. This
programmability offered by SDN (through the SDN controller)
can then be exploited in order to dynamically configure a
network path that satisfies the security policies related to the
sensitive data to convey [4]. The objective of the work
presented in this paper is then to propose a new network
application (running upon a SDN controller) allowing us to
automatically compute and establish such a trusted path
compliant with the security policies of the data to transfer.

The paper is structured as follows. In Section 2, we analyze
the related work and position our approach. Then section 3
introduces the general architecture and the proposed interfaces.
Section 4 details our implementation, the SDN test-bed used
for experimentations, and the obtained results as well as some
recommendations. Finally, the conclusion summarizes the
contributions and presents some perspectives.

II. RELATED WORK

Different works have already been performed on how to
secure the SDN technology for instance by preventing DoS
attacks through overloading SDN switches or attacks on SDN
applications, or man in the middle attacks between the SDN
controller and the switch [5][6]. However, the problem we
address in this paper falls within the dual topic on how to use
SDN in order to improve network security, and this problem
has been less addressed at this stage. Related to this last topic,
we can nevertheless mention research works exploiting SDN to
better monitor and inspect the traffic for the detection of
potential network attacks or malicious softwares [7], and then
to reroute this hazardous traffic in a quarantine zone. Other
approaches [8] use SDN in order to “slice” the network traffic
which improves the user data security (each SDN controller
being for instance only able to access to one slice but not to the
others); but these approaches do not deal with the computation
of a trusted path able to transport a sensitive traffic in the
network. The use of SDN technologies for trusted path has in
fact already been mentioned [4], but to our best knowledge, it
has not really been proposed and carried out a solution to
enforce a trusted path satisfying the security constraints of a
particular sensitive data to transport in the network.

However, various works are tackling the use of SDN in
order to establish a network path that satisfies some constraints
of QoS (e.g., bandwidth, latency, jitter) or reliability (e.g.,
using disjoint multipath). These works cover the intra or inter
domains [9][10] and can leverage classical path computation
approaches such as RSVP, MPLS Traffic Engineering (MPLS-
TE), or IETF Path Computation Element (IETF-PCE).
Nevertheless, these approaches are not targeting the
establishment of a trusted path satisfying some specific security
constraints; even if some approaches mention this as a future
direction. For instance, in the scope of the IETF-PCE working
group, it is proposed an extension of the Path Computation
Element Communication Protocol (PCEP) with the notion of
“Explicit Route Exclusions” [11]. Therefore, the approach
proposed in this paper consists in leveraging this type of work
by using the SDN technology in order to support various
security constraints as well as to enable a dynamic path
configuration. This will indeed allow protecting the different
types of sensitive data transported in the cloud infrastructure as
well as supporting the dynamicity and elasticity of such cloud
environments (e.g., ensuring the dynamic and per-flow path
configuration for VMs migrating to different locations).

III. GENERAL ARCHITECTURE

In this section, we present the general architecture as well
as the proposed messages to request the setting and unsetting of
a trusted path satisfying some given security constraints.

A. Architecture principles

Fig.1 depicts the principle of our proposed architecture
allowing to request and configure a Trusted Path (TP) in a
SDN network. The core of this architecture is the proposed
Trusted Path Controller (TPC) which is running on top of a
SDN controller. Let then consider the transport of a sensitive
data through the SDN network and between two applications
running in two different servers/VMs (called Source and
Destination server/VM in Fig.1). The transport of this

particular sensitive data flow should comply with a given
security policy (e.g., avoid un-trusted switches, areas,
providers). Note that the application can be a business
application of the cloud user or even a FTP server/client for
instance to backup a sensitive file. Indeed, for a backup, it may
be requested that a sensitive file (or set of sensitive files) must
be transferred by FTP (or SFTP) through a path satisfying a
given security constraint; while the other traffic (e.g., Web or
HTTP) can use the default path which is then not necessarily
satisfying this constraint.

A Trusted Path Agent (TPA) is then running in the Source
server/VM in order to request the establishment of the TP for
the transfer of the sensitive data flow. As shown Fig.1, the TPA
can get the security policy when the application requests the
transfer. For this purpose, different mechanisms can be used
such as the one proposed in our previous work where data and
policy are bundled in a structure called Privacy Data Envelope
(PDE). In this case, if the application is executed in a Web
browser (connected to a remote Web Server), the TPA can be a
browser plug-in intercepting the HTTP messages transporting
the PDE (policy being extracted from this PDE) [12]; if the
application is a mailer, the TPA can be a mailer plug-in (policy
being extracted from the mail containing the PDE) [12]; or if
the application is a FTP server, the TPA can be a module using
Linux FUSE and intercepting -within the OS- the FTP request
made on the PDE file (policy being also extracted from it) [13].

Server/VM OS

Source server/VM

Trusted

Path

Agent

Policy

D
at

a

In
-B

an
d

 C
tr

l
Out-of-Band Ctrl

Network

Interface Card

In-Band Ctrl

Data

Application

receiving

sensitive

traffic

D
at

a

SDN Network

SDN Controller

Trusted Path

Controller

Application

sending

sensitive

traffic

Destination server/VM

Server/VM OS

Network

Interface Card

Data

Fig.1. Overall architecture of the SDN-based trusted path control.

The TPA is then in charge to send the policy to the TPC
(see Fig.2) which (i) computes a path satisfying the policy (see
Policy-aware Path Computing module in Fig.2) and (ii)
configures this path within the SDN network by using a SDN
protocol as OpenFlow (see Policy-aware Path Configuration
module in Fig.2). An acknowledgment is then sent back to the
TPA to inform it that the request has been received and that the
path is well configured or not (if not, some information is
provided within this acknowledgment about the reason of the
failure). Note this mechanism allows changing the policy for
each file transfer if needed.

There are two possible architectures for the TPA to send the
policy to the TPC (see Fig.1):

• Out-of-Band architecture: the TPA sends the policy on a
Web Service interface (e.g., REST) exposed by the TPC.
This Web Service interface is then in charge to trigger the
Policy-aware Path Computing module (see Fig.2).

• In-Band architecture: the TPA forges and sends to the SDN
network a dedicated IP packet (“signaling packet”)
containing the policy in its payload. When this packet
crosses the first SDN switch of the network, it is
forwarded to the SDN controller (whether because it does
not correspond to any rule in the switch forwarding table,
or because it corresponds to a dedicated rule identifying it
as a request coming from a TPA). The SDN controller
then extracts the policy from the signaling packet with the
Policy Extractor module and triggers the Policy-aware
Path Computing module (see Fig.2).

In the section IV, we will provide more details on these two
architectures with their respective advantages and drawbacks.

Trusted Path Controller (TPC)

Out-of-Band

SDN Controller

Policy

Extractor

P
o

li
cy

Policy

Network

Topology

Policy-aware

Path ConfigurationAck

A
ck

Policy-aware

Path Computing

SDN rules (eg OpenFlow)

OpenFlow

Rules sender

Trusted Path

O
p

en
F

lo
w

ru
les

Fig.2. Trusted Path Controller. Arrow “Policy” (resp. “Ack”) corresponds

to the message set-trusted-path (resp. ack-set-trusted-path).

B. Communication to the Trusted Path Controller

The application (or an administrator) communicates,
through the TPA, to the TPC thanks to different messages.
They allow setting (and unsetting) a TP and getting the
response back. These messages, both applicable for the Out-of-
Band and In-Band architectures, are the following:

• set_trusted_path: request to configure a TP satisfying a

given policy.

• ack_set_trusted_path: response to the set_trusted_path

request. In this response, it is specified if the TP has been

set or not (and the reason).

• unset_trusted_path: request to release a TP.

• ack_unset_trusted_path: response to the

unset_trusted_path request. In this response, it is

specified if the TP has been unset or not (and the reason).

Moreover, the previous message set_trusted_path (to

request a TP) has the following parameters:

• request_id: identifier of the request. It is incremented

each time a set_trusted_path the TPC receives a request.

• destination_IP: IP address of the destination of the TP.

• port_number: port number of the destination of the TP

(for a TCP/UDP traffic).

• excluded_switches: list of excluded switches given by

their characteristics as follows:

- switch_id: identifier of the switch given by the

controller.

- manufacturer: company name of the switch

manufacturer. All the switches for which the MAC

address is within the Organizationally Unique Identifier

(OUI) of this manufacturer will be excluded.

- type: Type of the switch (e.g., PHYSICAL_SWITCH,

VIRTUAL_SWITCH).

- OS_version: OS version of the switch.

• excluded_links: list of excluded links given by their

characteristics as follows:

- link_id: link defined with the switch_id of the two

switchs at the extremity of the link.

• telcos_id: identifier of the telco.

• location: location of the switch that can be a country (e.g.,

FRANCE, USA) or any other geographical entity.

IV. PROTOTYPE AND EVALUATIONS

This section presents the prototype implementing our
approach, its experimentations performed on a test-bed of
SDN/OpenFlow switches, and the obtained evaluation results
(notably regarding the Out-of-Band and In-Band architectures).

A. Prototype and SDN test-bed description

The prototype is performed on the Floodlight SDN
controller (version 0.90) which has been extended with our
proposed TPC module. This module, developed in java, takes
as inputs (i) the policy defined in the previous section III.B and
(ii) the Network Topology available in the SDN controller (see
Fig.2). It computes then a TP compatible with this policy by
using a shortest path algorithm performed over the network
topology which has been filtered according to the requested
policy (e.g., avoid given un-trusted nodes or links). The TP is
then sent to the Policy-aware Path Configuration module which
is in charge to establish the different SDN rules that need to be
enforced in each switch along this path and to send these rules
to the SDN controller for the actual OpenFlow-based
configuration of the switches.

Regarding the TPA, it has simply been implemented as a
Web Service client (using the curl command) for the Out-of-
Band case; and as an IP packet forged by the Scapy tool (but
any other similar tool can be used) for the In-Band case.

The SDN test-bed is composed of five OpenFlow-enabled
switches (see Fig.3), all of type Alcatel-Lucent OmniSwitch
6900-T20. The Floodlight controller (extended with our
proposed TPC module) is running in a machine M1 (HP620,
Ubuntu). It communicates to each SDN switch via the
OpenFlow protocol (see dashed lines in Fig.3). The switches
(named SW1 to SW5) are connected together through Ethernet
10 Gb links and the overall connectivity topology is shown
Fig.3 (see solid lines). The switch ports are noted Pij where i
denotes the identifier of the switch and j the identifier of the
port of this switch. Finally, a Client machine M2 (ASUS
G75VW, Windows 8) is connected to the switch SW2; while a
Web Server machine M3 (HP DC7700, Windows 7) and a FTP
Server machine M4 (HP DC7700, Windows 8) are connected
to the switch SW5. M2, M3 and M4 are connected to these
switches with Ethernet 10 Gb links.

This test-bed aims to illustrate the case of a company

having applications deployed over different servers/VMs and

that need to exchange different types of sensitive data between

them over a SDN network. This is of course a simplified

layout regarding a full data center environment but it is

however focused on the core part of the mechanism we want

to evaluate (i.e., using our proposed extended SDN controller

to enforce a trusted path over a network of SDN switches).

Client

(M2)

Web Server

(M3)

FTP Server

(M4)

P21

P22

P23

P11

P12
P13

P14

P31
P32

P33 P41

P42

P43

P51

P52 P53

P54

Trusted Path Controller

(M1)

SW2

SW3 SW4

SW5

Fig.3. Test-bed of SDN/OpenFlow switches (OmniSwitch 6900-T20)

B. Experimentations and results

For the experimentation, we have considered the following

data exchanges:

• An HTTP request from the Client M2 to the Web Server

M3. No policy is requested for this HTTP request.

• An FTP file transfer of a sensitive data from the Client

M2 to the FTP Server M4. To perform the FTP transfer of

this sensitive file, a policy is requested and consists in

avoiding the switch SW1 considered as un-trusted (e.g.,

as it may belong to an un-trusted network area).

The experimentation is composed of the following steps:

1. From the Client M2, send the policy (i.e., avoid switch

SW1) to the TPC for the FTP transfer of a sensitive data

to be done from M2 to M4. The two Out-of-Band and In-

Band solutions have been respectively tested.

2. From the Client M2, perform the HTTP request to the

Web Server M3.

3. From the Client M2, perform the FTP transfer of the

sensitive data from M2 to the FTP Server M4.

In order to observe the path followed by the data, it is

observed the packets on the following switch ports: P11, P31,

P41, P51 (see Fig.3). For this purpose, a port mirroring has been

configured on each of these switch ports so that the traffic can

be captured by the WireShark tool. Fig.4 depicts obtained

results in WireShark once the HTTP request and the FTP

transfer of the sensitive file have then been performed (in the

Out-of-Band case but a similar result is obtained with the In-

Band case). We can see that the policy has been well enforced

as, while the HTTP request is crossing the switches SW2-

SW1-SW5 (shortest path); the sensitive data has been

transferred by crossing the switches SW2-SW3-SW4-SW5.

The transfer of the sensitive data follows therefore a trusted

(but longer) path as the switch SW1 is not authorized (i.e., un-

trusted) by the policy applicable for this data.

a) Switch SW1 / port P11

(observed traffic: HTTP request)

b) Switch SW3 / port P31

(observed traffic: FTP file transfer)

c) Switch SW4 / port P41

(observed traffic: FTP file transfer)

d) Switch SW5 / port P51

(observed traffic: FTP file transfer)

Fig.4. Wireshark traffic captures. The non sensitive HTTP request crosses

SW2-SW1-SW5 (SW1 being untrusted); while the FTP transfer of the

sensitive data crosses SW2-SW3-SW4-SW5 (trusted path)

In addition, the following performance times have been

measured during the experimentation:

• PolicySendingAndAck: time to send the policy to the TPC

module and get back the ack.

• OpenFlowRulesConfiguration: time to configure the

OpenFlow rules in each switch.

Note that due to constraints in the Floodlight

implementation, the SDN switches are actually configured

(according to the computed trusted path) when the first packet

of the sensitive flow is crossing the switches. Therefore, the

total time to configure all the SDN switches is the time

OpenFlowRulesConfiguration multiplied by the number of

switches to configure.

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

Policy sending and

Ack time (In-Band case)

OpenFlow rule

configuration time

SDN controller time
Switch configuration time

(incl. com with SDN controller)

ms

Fig.5. Policy sending time and OpenFlow rule configuration time

The performance times have been evaluated after having

performed the previous experimentation 10 times. The

PolicySendingAndAck time (to send the policy and get the

ack) is of an average of 61 ms in the Out-of-Band case, and of

an average of 3 ms in the In-band case.

The OpenFlowRulesConfiguration time per switch is of an

average of 8,6 ms (and of course does not depend on the Out-

of-Band or In-band architecture). Moreover, this

OpenFlowRulesConfiguration time is split between (i) 7,5 ms

(i.e., 87% of the time) spent in the SDN controller and (ii) 1,1

ms (i.e., 13% of the time) spent in the switch configuration

(including the communication with the SDN controller). Fig.5

depicts these different values for the In-Band case.

V. DISCUSSIONS

Let analyze the In-Band and Out-of-Band architectures

according to different criteria.

First, the policy sending performance (i.e.,

PolicySendingAndAck time) is then better for In-Band than

for Out-of-Band.

Also, in the In-Band case, the TPA has not to be

configured with the address of the TPC (as the set-trusted-path

packet will be automatically forwarded to it when crossing the

first SDN switch) and this improves the system

configurability. Indeed, for the Out-of-Band, all TPAs must

then be configured with the address of the TPC.

Regarding security, we can note that with the Out-of-Band

architecture and its exposed Web Services, the TPC could be

more easily attacked by a hacker to take control of the

network. In-Band attacks are also possible but they could be

more easily filtered by the SDN controller.

Finally, regarding portability, the In-Band architecture

requires the set-trusted-path signaling packet (which embeds

the policy in its payload) to be entirely forwarded to the SDN

controller (i.e., with the payload) through the OpenFlow

Packet-In. This aspect is mentioned in the OpenFlow

specification from the release 1.2 by setting the field max_len

of the OpenFlow Packet-In with the value

OFPCML_NO_BUFFER (meaning that the packet is not

buffered in the switch). However, it requires the switch to be

configured accordingly. The Out-of-Band architecture has of

course not this constraint as the set-trusted-path request is not

transmitted through OpenFlow.

Fig.6 summarizes this comparison. Despite the last point

on portability, we could then conclude that the balance falls

more in favor of the In-Band architecture.

 Out-of-Band In-Band

Performance - +

Configurability - +

Security - +

Portability + -

Fig.6. Comparison of Out-of-Band and In-Band architectures

VI. CONCLUSION

In this paper we have proposed a new approach which
leverages the programmability offered by the SDN technology
in order to enforce a trusted path to transfer sensitive data in
the network. Indeed, given a policy related to a sensitive data
(e.g., data should not cross nodes of a given area), our approach
allows sending this policy to a Trusted Path Controller which
automatically enforces it in the network. The two In-Band and
Out-of-Band architectures have been investigated and
implemented. Finally different experimentations and
evaluations have been performed on a test-bed of SDN

switches (OmniSwitch 69000-T20) which has allowed us to
show the feasibility of this approach as well as some of its
performances.

Different perspectives can be mentioned notably by making
further analysis on the scalability of the two architectures
(knowing however that the additional traffic is related to
signaling and also only to the transfer of the sensitive data) or
on their security (e.g., by signing the IP signaling packet or by
certifying the trusted path configuration). In addition, the
approach will be carried out in a full data center environment
(e.g., integration of the Trusted Path Controller within a cloud
management platform such as OpenStack and its Neutron
network component). For this purpose, it will be considered the
inter and intra data center parts of the trusted path as well as the
use of distributed SDN controllers in order to provide the end-
to-end trusted path in such environments.

 ACKNOWLEDGMENT

The authors would like to greatly thank Alcatel-Lucent
Enterprise, and especially Madani Dahili, for offering an access
to their equipment and lab as well as for their very helpful
support. They also thank Laurent Bernard (Télécom SudParis),
Monsef Tazi (Télécom SudParis), and Dominique Verchère
(Alcatel-Lucent Bell Labs) for all their help and advices.

REFERENCES

[1] Cloud Security Alliance (CSA), “The notorious nine cloud computing
top threats in 2013”, February 2013.

[2] Article 29 Data Protection Working Party, “Opinion 05/2012 on cloud
computing”, WP 196, Brussels, July 2012.

[3] S. Pearson and G. Yee (Eds.), “Privacy and security for cloud
computing”, Springer, 2013.

[4] D. Pitt, “Trust in the cloud: the role of SDN”, Network Security,
Elsevier, vol. 2013, no 3.

[5] S. Scott-Hayward, G. O'Callaghan, S.Sezer, S. "SDN security: A
survey". In IEEE conference on SDN for Future Networks and Services,
SDN4FNS, Trento, Italy, 2013.

[6] R. Kloti, V. Kotronis, P. Smith, "OpenFlow: A security analysis," IEEE
International Conference on Network Protocols, ICNP, Göttingen,
Germany, 2013.

[7] S. Shin, G. Gu, "CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks", IEEE International Conference
on Network Protocols, ICNP, Austin, USA, 2012.

[8] V. Kotronis, D. Schatzmann, B. Ager, “On bringing private traffic into
public SDN testbeds”, ACM SIGCOMM workshop on Hot topics in
software defined networking, Hong Kong, 2013.

[9] F. Derakhshan, H. Grob-Lipski, H. Roessler, P. Schefczik, M. Soellner,
“Enabling Cloud Connectivity Using SDN and NFV Technologies”,
Mobile Networks and Management, Lecture Notes of the Institute for
Computer Sciences, Vol. 125, Springer, 2013.

[10] F. Salvestrini, G. Carrozzo, N. Ciulli, "Towards a Distributed SDN
Control: Inter-Platform Signaling among Flow Processing Platforms",
IEEE SDN Conference on Future Networks and Services, SDN4FNS,
Trento, Italy, 2013.

[11] E. Oki, T. Takeda, A. Farrel, “Extensions to the Path Computation
Element Communication Protocol (PCEP) for Route Exclusions”, IETF
RFC 5521, April 2009.

[12] M. Ghorbel, A. Aghasaryan, S. Betgé-Brezetz, M.P. Dupont, G.B.
Kamga, S. Piekarec, “Privacy data envelope: concept and
implementation”, Ninth Annual International Conference on Privacy,
Security and Trust, PST, Montréal, Canada, 2011.

[13] S. Betgé-Brezetz, G.B. Kamga, M.P. Dupont, A. Guesmi, “End-to-End
Privacy Policy Enforcement in Cloud Infrastructure”, IEEE Conference
on Cloud Networking, CloudNet, San Francisco, USA, 2013.

